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Abstract

A molecular characterization of the weighted Herz-type Hardy spaces HK̇
n(1/p−1/q),p
q (w, w) and

HK
n(1/p−1/q),p
q (w, w) is given, by which the boundedness of the Hilbert transform and the Riesz trans-

forms are proved on these space for 0 < p�1. These results are obtained by first deriving that the convolution
operator Tf = k ∗ f is bounded on the weighted Herz-type Hardy spaces.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In 1964, Beurling [2] first introduced some fundamental form of Herz spaces to study convo-
lution algebras. Four years later Herz [7] gave versions of the spaces defined below in a slightly
different setting. Since then, the theory of Herz spaces has been significantly developed, and these
spaces have turned out to be quite useful in analysis. For example, they were used by Baernstein
and Sawyer [1] to characterize the multipliers on the standard Hardy spaces, and used by Lu and
Yang [17] in the study on partial differential equations.

On the other hand, a theory of Hardy spaces associated with Herz spaces has been developed
for more than a decade (see [4,15]). These new Hardy spaces can be regarded as the local version
at the origin of the classical Hardy spaces Hp and are good substitutes for Hp when we study
the boundedness of non-translation invariant operators (see [16]). For the weighted case, Lu and
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Yang [13,14] introduced the following weighted Herz-type Hardy spaces and established their
atomic decompositions.

Let Qk = {
(x1, . . . , xn) ∈ Rn : |xi |�2k, i = 1, . . . , n

}
and Ck = Qk\Qk−1 for k ∈ Z, �k be

the characteristic function of the set Ck . For a non-negative weight function w, we set w(E) =∫
E

w(x) dx and write L
q
w(Rn) to be the set of all functions f satisfying

‖f ‖L
q
w

=
(∫

Rn
|f (x)|qw(x) dx

)1/q

< ∞.

In what follows, if w ≡ 1, we will denote L
q
w(Rn) by Lq(Rn).

Definition. Let � ∈ R, 0 < p, q < ∞, and w1 and w2 be non-negative weight functions.

(a) The homogeneous weighted Herz space K̇
�,p
q (w1; w2) is the set of all functions f ∈ L

q
loc

(Rn\{0}, w2(x) dx) satisfying ‖f ‖K̇
�,p
q (w1;w2)

< ∞, where

‖f ‖p

K̇
�,p
q (w1;w2)

=
∑
k∈Z

[w1(Qk)]
�p/n ‖f �k‖p

L
q
w2

.

(b) The non-homogeneous weighted Herz space K
�,p
q (w1; w2) is the set of all functions f ∈

L
q
loc(R

n, w2(x) dx) satisfying ‖f ‖K
�,p
q (w1;w2)

< ∞, where

‖f ‖p

K
�,p
q (w1;w2)

= [w1(Q0)]
�p/n ‖f �Q0

‖p

L
q
w2

+
∞∑

k=1

[w1(Qk)]
�p/n ‖f �k‖p

L
q
w2

.

Let Gf (x) be the grand maximal function of f (x) defined by

Gf (x) = sup
�∈AN

sup
|x−y|<t

t>0

|(f ∗ �t )(y)|,

where AN =
{
� ∈ S(Rn) : sup

|�|,|�|�N

|x�D��(x)|�1
}

for N sufficiently large.

Definition. Let � ∈ R, 0 < p < ∞, 1 < q < ∞ and w1 and w2 be non-negative weight
functions.

(a) The homogeneous weighted Herz-type Hardy space HK̇
�,p
q (w1; w2) associated with the space

K̇
�,p
q (w1; w2) is defined by

HK̇
�,p
q (w1; w2) = {

f ∈ S′(Rn) : Gf ∈ K̇
�,p
q (w1; w2)

}
.

with norm ‖f ‖HK̇
�,p
q (w1;w2)

= ‖Gf ‖K̇
�,p
q (w1;w2)

.

(b) The non-homogeneous weighted Herz-type Hardy space HK
�,p
q (w1; w2) associated with the

space K
�,p
q (w1; w2) is defined by

HK
�,p
q (w1; w2) = {

f ∈ S′(Rn) : Gf ∈ K
�,p
q (w1; w2)

}
.

with norm ‖f ‖HK
�,p
q (w1;w2)

= ‖Gf ‖K
�,p
q (w1;w2)

.
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Throughout this paper C denotes a constant not necessarily the same at each occurrence, and a
subscript is added when we wish to make clear its dependence on the parameter in the subscript.
We also use a ≈ b to denote the equivalence of a and b; that is, there exist two positive constants
C1, C2 independent of a, b such that C1a�b�C2a.

2. The A1 weights

The definition of weighted class Ap was first used by Muckenhoupt [18], Coifman–Fefferman
[3], and Hunt–Muckenhoupt–Wheeden [8] in the investigation of weighted Lp boundedness of
Hardy–Littlewood maximal function and Hilbert transform. In this article a weight means the A1
weight. More precisely, let w be a nonnegative function defined on Rn. We say that w ∈ A1 if

1

|I |
∫

I

w(x) dx�C · ess inf
x∈I

w(x) for every cube I ⊆ Rn.

For any cube I and � > 0, we shall denote by �I the cube concentric with I which is � times
as long. It is known that for w ∈ A1, w satisfies the doubling condition; that is, there exists
an absolute constant C such that w(2I )�Cw(I). A more specific estimate for w(�I ) is given
as follows.

Theorem A (Garcia-Cuerva and Rubio de Francia [5]). Let w ∈ A1. Then, for any cube I

and � > 1,

w(�I )�C�nw(I),

where C is independent of I and �.

If there exist r > 1 and a fixed constant C > 0 such that(
1

|I |
∫

I

wr(x) dx

)1/r

� C

|I |
∫

I

w(x) dx for all cubes I ⊆ Rn,

we say that w satisfies reverse Hölder condition and write w ∈ RHr . It follows from Hölder’s
inequality that w ∈ RHr implies w ∈ RHs for s < r . It is known that if w ∈ RHr, r > 1, then
w ∈ RHr+� for some � > 0. We thus write rw ≡ sup{r > 1 : w ∈ RHr} to denote the critical
index of w for the reverse Hölder condition.

The following result provides us with the comparison between the Lebesgue measure of a set
E and its weighted measure w(E).

Theorem B (Garcia-Cuerva and Rubio de Francia [5], Gundy and Wheeden [6]). Let w ∈ A1
∩ RHr, r > 1. Then there exist constants C1, C2 > 0 such that

C1
|E|
|I | � w(E)

w(I)
�C2

( |E|
|I |

)(r−1)/r

for any measurable subset E of a cube I .
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3. The atomic decomposition and molecular characterization

Lu and Yang [13,14] gave the following definition of atoms in the weighted Herz-type Hardy
space and its atomic decomposition.

Definition. Let w1, w2 ∈ A1, 1 < q < ∞, n(1 − 1/q)�� < ∞, and s be a non-negative integer
greater than or equal to N ≡ [� + n(1/q − 1)], where [ · ] is the integer function.

(a) A function a on Rn is called a central (�, q, s)-atom with respect to (w1, w2) (or a central
(�, q, s; w1, w2)-atom), if it satisfies

(i) supp a ⊆ B(0, R), R > 0,
(ii) ‖a‖L

q
w2

�w1(B(0, R))−�/n,

(iii)
∫

Rn a(x)x� dx = 0 for every multi-index � with |�|�s.
(b) A function a on Rn is called a central (�, q, s)-atom of restricted type with respect to (w1, w2)

(or a central (�, q, s; w1, w2)-atom of restricted type), if it satisfies (ii), (iii), and
(i ′) supp a ⊆ B(0, R), R�1.

Theorem C. Let w1, w2 ∈ A1, 0 < p�1 < q < ∞, and n(1 − 1/q)�� < ∞. Then f ∈
HK̇

�,p
q (w1; w2) (or HK

�,p
q (w1; w2)) if and only if

f (x)
S′=

∞∑
k=−∞

�kak(x)

(
or f (x)

S′=
∞∑

k=0

�kak(x)

)
,

where each ak is a central (�, q, s; w1, w2)-atom (or for non-homogeneous spaces, ak is a cen-
tral (�, q, s; w1, w2)-atom of restricted type), and

∑∞
k=−∞ |�k|p < ∞ (

or
∑∞

k=0 |�k|p < ∞)
.

Moreover,

‖f ‖HK̇
�,p
q (w1;w2)

≈ inf

( ∞∑
k=−∞

|�k|p
)1/p

⎛⎝or ‖f ‖HK
�,p
q (w1;w2)

≈ inf

( ∞∑
k=0

|�k|p
)1/p

⎞⎠ ,

where the infimum is taken over all the above decompositions of f (the symbol “
S′=” denotes

convergence in the sense of tempered distributions).

We recall the w-(p, q, s)-atom in the classical weighted Hardy spaces (cf. [10]). Let 0 <

p�1 < q �∞ and w ∈ A1. For s ∈ Z satisfying s� [n(1/p − 1)], a real-valued function a(x)

is called w-(p, q, s)-atom centered at 0 if

(i) a ∈ L
q
w(Rn) and is supported in a cube I with center 0,

(ii) ‖a‖L
q
w
�w(I)1/q−1/p,

(iii)
∫

Rn a(x)x� dx = 0 for every multi-index � with |�|�s.

In the definition of central atom, if we set � = n(1/p−1/q) and consider w = w1 = w2 ∈ A1,
then N = [n(1/p − 1)]. Thus, for 1 < q < ∞, the w-(p, q, s)-atom centered at 0 in the classical
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weighted Hardy spaces coincides with the central (n(1/p−1/q), q, s; w, w)-atom. Denote by Ir

the cube centered at the origin with side length 2r . The following definition of molecule established
by Lee and Lin [10] is meaningful in the weighted Herz-type Hardy spaces.

Definition. For 0 < p�1 < q < ∞, let w ∈ A1 with critical index rw for the reverse Hölder
condition. Set s� [n(1/p − 1)], � > max{ srw

n(rw−1)
+ 1

(rw−1)
, 1

p
− 1}, a = 1 − 1/p + �, and

b = 1 − 1/q + �.

(a) A central (p, q, s, �)-molecule with respect to w (or a central w-(p, q, s, �)-molecule) is a
function M ∈ L

q
w(Rn) satisfying

(i) M(x) · w(I|x|)b ∈ L
q
w(Rn),

(ii) ‖M‖a/b

L
q
w

· ∥∥M(x) · w(I|x|)b
∥∥1−a/b

L
q
w

≡ Nw(M) < ∞,

(iii)
∫

Rn M(x)x� dx = 0 for every multi-index � with |�|�s.
(b) A function M ∈ L

q
w(Rn) is called a central (p, q, s, �)-molecule of restricted type with respect

to w (or a central w-(p, q, s, �)-molecule of restricted type) if it satisfies (i)–(iii), and
(iv) ‖M‖L

q
w
�w(I1)

1/q−1/p.

The above Nw(M) is called the molecular norm of M with respect to w (or w-molecular norm
of M). If there is no ambiguity, we still use N(M) to denote the w-molecular norm of M .

Following from [10, Theorem 1], we immediately have the molecular characterization of the
weighted Herz-type Hardy spaces.

Theorem 1. Let (p, q, s, �) be the quadruple in the definition of central molecule, and let
w ∈ A1.

(a) Every central (p, q, s, �)-molecule M with respect to w belongs to HK̇
n(1/p−1/q),p
q (w; w)

and ‖M‖
HK̇

n(1/p−1/q),p
q (w;w)

�CN(M), where the constant C is independent of M .

(b) Every central (p, q, s, �)-molecule of restricted type M with respect to w belongs to
HK

n(1/p−1/q),p
q (w; w) and ‖M‖

HK
n(1/p−1/q),p
q (w;w)

�CN(M), where the constant C

is independent of M .

Proof. Let M be a central w-(p, q, s, �)-molecule with N(M) = 1. In the proof of [8, Theorem
1], we have showed that M = ∑∞

k=0 Mk = ∑
(Mk − Pk) + ∑

Pk , where

(I) each (Mk−Pk) is a multiple of aw-(p, q, s)-atom centered at 0 with a sequence of coefficients
in lp,

(II) the sum
∑

Pk can be written as an infinite linear combination of w-(p, ∞, s)-atom centered
at 0 with a sequence of coefficients in lp.

Note that each w-(p, ∞, s)-atom centered at 0 must be an w-(p, q, s)-atom centered at 0
for any 1 < q < ∞, and the w-(p, q, s)-atom centered at 0 coincides with the central (n(1/p −
1/q), q, s; w, w)-atom. We hence obtain M = ∑∞

i=0 �iai , where each ai is a central
(n(1/p − 1/q), q, s; w, w)-atom and

∑∞
i=0 |�i |p < ∞. It follows from Theorem C that M ∈

HK̇
n(1/p−1/q),p
q (w; w) and ‖M‖

HK̇
n(1/p−1/q),p
q (w;w)

�C = CN(M).

As to the central molecule of restricted type, the proof is similar and so the details are
omitted. �
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4. Main result and applications

The Calderón–Zygmund theorem on singular integrals, as presented by Stein [19], shows that
if k ∈ L2(Rn) satisfies∫

|x|�2|y|
|k(x − y) − k(x)| dx�C (∀y �= 0)

for which k̂ is bounded, then the convolution operator f �→ k ∗ f is bounded on Lp, p > 1. We
have a similar result as follows.

Theorem 2. Let w ∈ A1, 0 < p�1 < q < ∞, and � = n(1/p − 1/q). Assume that k ∈
Lloc(R

n\{0}) satisfies ‖k ∗ f ‖L
q
w
�C1‖f ‖L

q
w

and, for j ∈ Z,∫
2j−1<|x|�2j

|k(x − y)−k(x)|q
|y|�q

w(x) dx�C22−jq(�+n−n/q)w(y) for 2j−2 �C3|y|, (1)

for some 0 < ��1 and absolute constants C1, C2, C3. Then there exists a constant C independent
of f such that ‖k ∗ f ‖K̇

�,p
q (w,w) �C‖f ‖HK̇

�,p
q (w,w), n/(n + �) < p�1, for all f ∈ K̇

�,p
q (w, w).

Proof. Given a central (�, q, 0; w, w)-atom f with supp f ⊆ Br ≡ B(0, r), then ‖f ‖L
q
w
�w

(Br)
1/q−1/p and

∫
f (x) dx = 0. It suffices to show ‖k∗f ‖K̇

�,p
q (w,w) �C, where C is independent

of f . Choose j0 ∈ Z satisfying 2j0−3 < C3r �2j0−2. Write

‖k ∗ f ‖p

K̇
�,p
q (w,w)

=
∞∑

j=−∞
w(Qj )

�p/n

(∫
Cj

|k ∗ f (x)|qw(x) dx

)p/q

=
⎛⎝ j0∑

j=−∞
+

∞∑
j=j0+1

⎞⎠w(Qj )
�p/n

(∫
Cj

|k ∗ f (x)|qw(x) dx

)p/q

≡ I1 + I2.

The L
q
w boundedness of k ∗ f implies

I1 �
j0∑

j=−∞
w(Qj )

�p/n‖k ∗ f ‖p

L
q
w
�C‖f ‖p

L
q
w

j0∑
j=−∞

w(Qj )
�p/n.

Since w ∈ A1, we have w ∈ RHr for some r > 1. Theorem B yields

w(Qj )�Cw(Qj0)|Qj |�|Qj0 |−� for � = (r − 1)/r,

and we hence obtain

I1 �Cw(Qj0)
�p/nw(Br)

p/q−12−j0�p�
j0∑

j=−∞
2j�p� �C�,p,ww(Br)

�p/n+p/q−1 �C�,p,w.

By the assumption and using Minkowski’s inequality for integral, we get

I2 =
∞∑

j=j0+1

w(Qj )
�p/n

(∫
Cj

|k ∗ f (x)|qw(x) dx

)p/q
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�
∞∑

j=j0+1

w(Qj )
�p/n

{∫
Cj

(∫
Br

|k(x − y) − k(x)||f (y)| dy

)q

w(x) dx

}p/q

� Cr�p
∞∑

j=j0+1

w(Qj )
�p/n

{∫
Cj

(∫
Br

|k(x − y) − k(x)|
|y|� |f (y)| dy

)q

w(x) dx

}p/q

� Cr�p
∞∑

j=j0+1

w(Qj )
�p/n

⎧⎨⎩
∫

Br

(∫
Cj

|k(x − y) − k(x)|q
|y|�q

w(x) dx

)1/q

|f (y)| dy

⎫⎬⎭
p

� Cr�p
∞∑

j=j0+1

w(Qj )
�p/n

{
2−j (�+n−n/q)

∫
Br

|f (y)|w(y)1/q dy

}p

.

The Hölder’s inequality gives
∫
Br

|f (y)||w(y)1/q dy�‖f ‖L
q
w
|Br |1/q ′

and Theorem B implies

w(Qj )�C|Qj |w(Qj0)|Qj0 |−1. We thus have

I2 �Cr�p+np/q ′
2−j0�pw(Qj0)

�p/nw(Ir)
p/q−1

∞∑
j=j0+1

2j�p−jp(�+n−n/q).

For n/(n + �) < p�1, the last summation

∞∑
j=j0+1

2j�p−jp(�+n−n/q) �C�,p,�2j0�p−j0p(�+n−n/q).

Hence

I2 �C�,p,�w(Qj0)
�p/nw(Ir)

p/q−1 �C�,p,�,w,

by which the proof is completed. �

Example 1. Let 	 ∈ Lq(Sn−1) be homogeneous of degree zero, where q > 1 and Sn−1 denotes
the unit sphere of Rn (n�2) equipped with normalized Lebesgue measure d
 = d
(x′). Set
k(x) = 	(x′)/|x|n, with 	 satisfies the Lip1 condition, and

∫
Sn−1 	(x′) d
(x′) = 0. It is known

that if 	 ∈ Lip1 then 	 satisfies Lq -Dini condition. By Lq boundedness of k ∗ f and [9, Lemma
5], k satisfies the hypothesis (1) of Theorem 2 for w ≡ 1 and � = 1/q. Using Theorem 2 for
w ≡ 1, we get ‖k ∗f ‖K̇

�,p
q (1,1) �C‖f ‖HK̇

�,p
q (1,1), n/(n+ �) < p�1. Note that the kernel k does

not satisfy the below hypothesis (3) of Theorem 4.

Example 2. Let k satisfy the same conditions as in Example 1. For q > 2 and w ≡ |x|a,
−1 < a�0. We know that w ∈ A1. By L

q
w boundedness of k ∗ f of Theorem 4 in [9] and the

[9, Lemma 5], k satisfies the hypothesis (1) of Theorem 2 for � = 1/q. By Theorem 2, we also
have ‖k ∗ f ‖K̇

�,p
q (w,w) �C‖f ‖HK̇

�,p
q (w,w), n/(n + �) < p�1.

It is known that the Hilbert transform is not a bounded operator on K̇
1−1/q,1
q (R), 1 < q < ∞

(see [12]). We shall prove that the HK̇
1/p−1/q,p
q (R) boundedness of Hilbert transform in Theorem

6 below, if the range of p is restricted to 0 < p�1. In order to show the HK̇
n(1/p−1/q),p
q (Rn)



204 M.-Y. Lee / Journal of Approximation Theory 138 (2006) 197–210

(w, w) boundedness of convolution operators, we need the following estimate which can be found
in [5, p. 412].

Lemma D. Let w ∈ Aq, q > 1. Then, for all r > 0, there exists a constant C independent of r

such that∫
|x|� r

w(x)

|x|nq
dx�Cr−nqw(Ir).

Theorem 3. Let w ∈ A1 with critical index rw for the reverse Hölder condition. Let 0 < p�
1 < q < ∞ and � = n(1/p − 1/q). Assume that k ∈ Lloc(R

n\{0}) satisfies ‖k ∗ f ‖L
q
w
�

C4‖f ‖L
q
w

and

|k(x − y) − k(x)|�C5
|y|�

|x|n+�
for |x|�C6|y| (2)

for some 0 < ��1 and absolute constants C4, C5, C6. If rw > (n + �)/�, then the operator
f �→ k ∗ f is bounded on HK̇

�,p
q (Rn)(w, w), n/(n + �) < p�1.

Proof. Let n/(n + �) < p�1 and rw > (n + �)/�. It is clear that [n(1/p − 1)] = 0 and
max{1/(rw−1)−1, 1/p−1} < �/n. Choose � satisfying max{1/(rw−1)−1, 1/p−1} < � < �/n.
It suffices to show that, for every central (�, q, 0; w, w)-atom f , k ∗ f is a central w-(p, q, 0, �)-
molecule and its molecular norm is uniformly bounded.

For central (�, q, 0; w, w)-atom f with supp (f ) ⊆ Br, ‖f ‖L
q
w
�w(Br)

1/q−1/p and
∫

f (x) dx

= 0, let a = 1 − 1/p + �, b = 1 − 1/q + �. Then

‖k ∗ f (·)w(I|·|)b‖q

L
q
w

=
∫

Rn
|k ∗ f (x)|qw(I|x|)qbw(x) dx

=
(∫

|x|�C6
√

nr

+
∫

|x|>C6
√

nr

)
|k ∗ f (x)|qw(I|x|)qbw(x) dx

≡ J1 + J2.

The L
q
w boundedness of k ∗ f implies

J1 � Cw(Ir)
qb‖k ∗ f ‖q

L
q
w

� Cw(Ir)
qb‖f ‖q

L
q
w

� Cw(Ir)
qbw(Ir)

1−q/p

� Cw(Ir)
qa.

To estimate J2 we write

J2 ≡
∫

|x|>C6
√

nr

|k ∗ f (x)|qw(I|x|)qbw(x) dx

=
∫

|x|>C6
√

nr

∣∣∣∣∫|y|� r

{k(x − y) − k(x)}f (y) dy

∣∣∣∣qw(I|x|)qbw(x) dx.

Since w ∈ A1, the Hölder inequality implies∣∣∣∣∫|y|� r

{k(x − y) − k(x)}f (y) dy

∣∣∣∣q
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�
(∫

|y|� r

|k(x − y) − k(x)|q ′
dy

)q/q ′ (∫
|y|� r

|f (y)|qw(y)w(y)−1 dy

)
�C{ess inf

x∈Ir

w(x)}−1‖f ‖q

L
q
w

(∫
|y|� r

|y|�q ′ |x|−nq ′−�q ′
dy

)q/q ′

�C|Ir |w(Ir)
−1‖f ‖q

L
q
w

(∫
|y|� r

|y|�q ′ |x|−nq ′−�q ′
dy

)q/q ′

�Crn+�q+nq/q ′
w(Ir)

−q/p|x|−nq−�q

By Theorem B and Lemma D,

J2 � Crn+�q+nq/q ′
w(Ir)

−q/p

∫
|x|>C6

√
nr

|x|−nq−�qw(I|x|)qbw(x) dx

� Crn−nqb+�q+nq/q ′
w(Ir)

qb−q/p

∫
|x|>C6

√
nr

|x|nqb−nq−�qw(x) dx

� Cw(Ir)
qa.

Hence ‖k ∗ f (·)w(I|·|)b‖L
q
w
�Cw(Ir)

a and

Nw(k ∗ f ) = ‖k ∗ f ‖a/b

L
q
w

‖k ∗ f (·)w(I|·|)b|1−a/b

L
q
w

�Cw(Ir)
(1/q−1/p)a/bw(Ir)

a(1−a/b) = C.

To show the vanishing moment conditions of k ∗f for central (�, q, s −1)-atom f with respect to
(w, w), we first claim the case w ≡ 1. Since ‖k ∗f (x)|x|nb‖Lq �Crna < ∞, Hölder’s inequality
implies∫

|x|>1
|k ∗ f (x)| dx�‖k ∗ f (x) · |x|nb‖q

(∫
|x|>1

|x|−q ′nb dx

)1/q ′

< ∞

and ∫
|x|�1

|k ∗ f (x)| · |x||�| dx�C‖k ∗ f ‖q < ∞.

Let f̂ be the Fourier transform of f . The moment condition of f gives f̂ (0) = 0 which implies
̂k ∗ f (0) = k̂(0)f̂ (0) = 0 and hence

∫
k ∗ f (x) dx = 0. For general w ∈ A1, let f be a

central (�, q, s − 1; w, w)-atom and f1 = w(Br)
1/p|Br |−1/pf . Then f1 is a multiple of a central

(�, q, s − 1; 1, 1)-atom. We have∫
Rn

k ∗ f (x) dx = C

∫
Rn

k ∗ f1(x) dx = 0,

by which the theorem is proved. �

Remark 1. We note that the condition (2) implies condition (1) provided w ∈ A1. To see this,
for f ∈ Lloc(R

n), let Mf denoted the Hardy–Littlewood maximal function of f defined by

Mf (y) = sup
r>0

1

|B(y, r)|
∫

B(y,r)

|f (x)| dx.
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If k satisfies (2) for some 0 < ��1 and absolute constants C5, C6, then we choose C3 = max
{1, C6/2}. For 2j−2 �C3|y| and |x| > 2j−1, we have |x| > 2j−1 �2C3|y| = max{2, C6} · |y| and∫

2j−1<|x|�2j

|k(x − y) − k(x)|q
|y|�q

w(x) dx � C5

∫
2j−1<|x|�2j

x−nq−�qw(x) dx

� C2−jq(n+�)

∫
|x−y|�c2j

w(x) dx

� C2−jq(n+�−n/q)Mw(y)

� C2−jq(n+�−n/q)w(y),

since |x| ≈ |x − y| for |x| > 2|y| and w ∈ A1 implies Mw(y)�Cw(y).

If we use a stronger condition than (2), then the weighted Lq -boundedness of the convolution
operator k ∗ f can be replaced by the L∞-boundedness of k̂.

Theorem 4. Let w ∈ A1 with critical index rw for the reverse Hölder condition, � = n(1/p −
1/q), 1 < q < ∞ and n/(n+s) < p�n/(n+s−1) where s ∈ N. Assume that k ∈ C∞(Rn\{0})
with |k̂|�C7 satisfies∣∣∣( �

�x

)�
k(x)

∣∣∣�C8|x|−n−|�| for all multi-indices |�|�s, (3)

where C7 and C8 are absolute constants. If rw > n+ s then the operator Tf := k ∗f is bounded
on HK̇

�,p
q (Rn)(w, w).

Remark 2. Theorem 4 extends Lu and Yang’s result [15, Theorem 4.3] to the weighted case.

Remark 3. We note that condition (3) implies condition (2) when C6 > 1. In fact, the mean
value theorem implies

|k(x − y) − k(x)|� |∇k(x − ty)||y|�C8|x − ty|−n−1|y| for some t ∈ [0, 1].
For |x|�C6|y|, we have |x − ty|� |x| − |ty|�c|x| and hence

|k(x − y) − k(x)|�C|x|−n−1|y|.

Proof of Theorem 4. Since n/(n + s) < p�n/(n + s − 1) and rw > n + s, we have s − 1 =
[n(1/p − 1)] and so a number � can be chosen satisfying max{(s − 1)rw(rw − 1)−1n−1 + (rw −
1)−1, 1/p − 1} < � < s/n. It suffices to prove that, for every central (�, q, s − 1; w, w)-atom f ,
Tf are w-(p, q, s − 1, �)-molecules and Nw(Tf )�C with C independent of f .

Given central (�, q, s−1; w, w)-atom f with supp (f ) ⊆ BR , we have ‖f ‖L
q
w
� w(BR)1/q−1/p

and
∫

f (x)x� dx = 0 for 0� |�|�s − 1. Let a = 1 − 1/p + � and b = 1 − 1/q + �. Then

‖Tf (x)w(I|x|)b‖q

L
q
w

=
∫

Rn
|Tf (x)|qw(I|x|)qbw(x) dx

=
(∫

|x|<2
√

nR

+
∫

|x|�2
√

nR

)
|Tf (x)|qw(I|x|)qbw(x) dx

:= I1 + I2.
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It follows from [5, p. 411, Theorem 3.1] to get the L
q
w boundedness of T , which combines with

Theorem A yields

I1 �Cww(IR)qb‖f ‖q

L
q
w
�Cww(IR)qa.

To estimate I2 we write

I2 :=
∫

|x|�2
√

nR

|k ∗ f (x)|qw(I|x|)qbw(x) dx

=
∫

|x|�2
√

nR

∣∣∣∣∣∣
∫

IR

⎧⎨⎩k(x − y) −
s−1∑
|�|=0

1

�!D
�k(x)(−y)�

⎫⎬⎭ f (y) dy

∣∣∣∣∣∣
q

w(I|x|)qbw(x) dx.

Taylor’s theorem and w ∈ A1 give∣∣∣∣∣∣
∫

IR

⎧⎨⎩k(x − y) −
s−1∑
|�|=0

1

�!D
�k(x)(−y)�

⎫⎬⎭ f (y) dy

∣∣∣∣∣∣
q

�CnR
qs |x|−nq−qs

∣∣∣∣∫
BR

f (y) dy

∣∣∣∣q
�CnR

qs |x|−nq−qs
(

ess inf
x∈IR

w(x)
)−q

w(BR)q−1‖f ‖q

L
q
w

�CnR
nq+qs |x|−nq−qsw(BR)−q/p for |x|�2

√
nR.

Thus, Theorem B and Lemma D imply

I2 � CRnq+qsw(BR)−q/p

∫
|x|�2

√
nR

|x|−nq−qsw(I|x|)qbw(x) dx

� CwRnq+qs−nqbw(BR)−q/p+qb

∫
|x|�2

√
nR

|x|nqb−nq−qsw(x) dx

� Cww(IR)qa.

Hence

‖Tf (x)w(I|x|)b‖L
q
w
�Cww(IR)a (4)

and

Nw(Tf ) = ‖Tf ‖a/b

L
q
w

‖Tf (x)w(I|x|)b‖1−a/b

L
q
w

�Cw.

Now, we are going to show the vanishing moment conditions of Tf for central (�, q, s − 1)-
atom f with respect to (1, 1). Plugging in w ≡ 1 in (4), we have ‖Tf (x)|x|nb‖q �CRna < ∞
whenever f is a central (�, q, s − 1; 1, 1)-atom. We first claim Tf (x) · x� ∈ L1 for |�|�s − 1.
Since Tf (x) · |x|nb ∈ Lq , we use Hölder’s inequality to get∫

|x|>1
|Tf (x)| · |x||�| dx�‖Tf (x) · |x|nb‖q

(∫
|x|>1

|x|q ′|�|−q ′nb dx

)1/q ′

< ∞

and ∫
|x|�1

|Tf (x)| · |x||�| dx�‖Tf ‖q

(∫
|x|�1

|x|q ′|�| dx

)1/q ′

< ∞.
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It follows from [20, Lemma 9.1] that f̂ is (s − 1)th order differentiable and f̂ (�) = O(|�|s) as
|�| → 0. If we set ej to be the j th standard basis of Rn and ��|h| = ��1|h|e1

��2|h|e2
· · · ��n|h|en

, then the

boundedness of k̂ implies∣∣∣∣∫
Rn

Tf (x) · x� dx

∣∣∣∣ = Cn

∣∣D�(T̂f )(0)
∣∣

= Cn

∣∣∣∣ lim|h|→0
|h|−|�|��|h|(k̂f̂ )(0)

∣∣∣∣
� Cn lim|h|→0

|h|s−|�|

= 0 for |�|�s − 1.

We hence prove that, for central (�, q, s − 1; 1, 1)-atom f ,∫
Rn

Tf (x) · x� dx = 0 for |�|�s − 1. (5)

For general case w ∈ A1, let f be a central (�, q, s − 1; w, w)-atom and let f1 = w(BR)1/p

|BR|−1/pf . Then f1 is a multiple of a central (�, q, s − 1; 1, 1)-atom. By (5),∫
Rn

Tf (x)x� dx = C

∫
Rn

Tf1(x)x� dx = 0 for |�|�s − 1.

Thus, the theorem is proved. �

If the regularity on the kernel is strengthened, the condition rw > n+ s can be drop off and the
range of p can be extended to (0, 1].

Corollary 5. Let w ∈ A1 and 0 < p�1 < q < ∞. Assume that k ∈ C∞(Rn\{0}) with |k̂|�C9
satisfies∣∣∣( �

�x

)�
k(x)

∣∣∣�C10|x|−n−|�| for all multi-indices �, (6)

where C9 and C10 are absolute constants. Then the operator Tf := k ∗ f is bounded on
HK̇

n(1/p−1/q),p
q (Rn)(w, w).

Proof. Given p ∈ (0, 1], we choose s ∈ N such that n/(n + s) < p�n/(n + s − 1). We then
choose a number � satisfying max{(s − 1)rw(rw − 1)−1n−1 + (rw − 1)−1, 1/p − 1} < � < ts/n,
for t ∈ N and t > ((s − 1)rw + n)/s(rw − 1). It suffices to prove that, for every central
(n(1/p − 1/q), q, ts − 1; w, w)-atom f , Tf are w-(p, q, s − 1, �)-molecules andNw(Tf )�C

with C independent of f . The corollary follows from the same arguments as in the proof of
Theorem 4. �

Remark 4. There are results similar to Theorems 2–4 and Corollary 5 for the spaces HK
�,p
q (Rn)

(w, w). We leave details to readers.

It was shown in [11] that the Hilbert transform and Riesz transforms are bounded on H
p
w for

w ∈ A1 and 0 < p�1. Recall that on R1, the Hilbert transform f �→ Hf is a convolution
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operator with kernel k(x) = 1/(�x). On Rn, n�2, let Rj , j = 1, 2, . . . , n, denote the Riesz
transforms defined by

Rjf = p.v. kj ∗ f (x) where kj (x) = �−(n+1)/2

(n + 1

2

) xj

|x|n+1 .

It is easy to check that the kernels k and kj satisfy condition (6) and so we have the following
theorem.

Theorem 6. Let w ∈ A1 and 0 < p�1 < q < ∞. The Riesz transforms are bounded on
HK̇

n(1/p−1/q),p
q (Rn)(w, w) and HK

n(1/p−1/q),p
q (Rn)(w, w). For n = 1, the Hilbert transform

is bounded on HK̇
1/p−1/q,p
q (R)(w, w) and HK

1/p−1/q,p
q (R)(w, w).
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